[1jstex] [1jstex]\lim_{n \to \infty}\sum_{k=1}^n \frac{1}{k^2}= \frac{\pi^2}{6}[1/jstex] [1/jstex]
[1jstex]\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)[1/jstex]
[jstex]\lim_{n \to \infty}\sum_{k=1}^n \frac{1}{k^2}= \frac{\pi^2}{6}
[/jstex]
\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
A\underset{b}A\underset{b}{\overset{a}{\longleftrightarrow}}B{\overset{a}{\longleftrightarrow}}B
A\underset{b}A\underset{b}{\overset{a}{\longleftrightarrow}}B{\overset{a}{\longleftrightarrow}}B
_{10}^{5}C^{16}2H_2 + O_2 \xrightarrow{n,m}2H_2 + O_2 \xrightarrow{n,m}2H_2 + O_2 A\underset{b}{\overset{a}{\longleftrightarrow}}BA\underset{0}{\overset{a}{\rightleftarrows}}BA\underset{0^{\circ}C }{\overset{100^{\circ}C}{\rightleftarrows}}B
_{10}^{5}C^{16}2H_2 + O_2 \xrightarrow{n,m}2H_2 + O_2 \xrightarrow{n,m}2H_2 + O_2 A\underset{b}{\overset{a}{\longleftrightarrow}}BA\underset{0}{\overset{a}{\rightleftarrows}}BA\underset{0^{\circ}C }{\overset{100^{\circ}C}{\rightleftarrows}}B